| . REPORT DOCUMENTATION PAGE Form Approved

OMB NO. 0704-0188

Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimates or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188,) Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 11, 2005 Final Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Ferret Workflow Anomaly Detection System Final Report C NBCHC-030082

6. AUTHOR(S)

Timothy J Smith

Stephany Bryant

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) ' 8. PERFORMING ORGANIZATION

MCNC-RDI REPORT NUMBER

P.O. Box 12889
RTP, NC 27709-2889

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

ARDA

9800 Savage Rd

RA Suite 6644

Ft Meade, MD 20755-6644

11. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official
ARDA position, policy or decision, unless so designated by other documentation.

12 a. DISTRIBUTION / AVAILABILITY STATEMENT _ 12 b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

The Ferret workflow anomaly detection system project [2003-2004] has provided validation and anomaly detection in accredited
workflows in secure knowledge management systems through the use of continuous, automated audits. A workflow, process, or
procedure, is the set of steps that need to be completed to accompllsh a goal. Anomaly detection is the determination that a condition
departs from the expected. -

The baseline behavior from which the anomaly is measured is usually derived via statistical sampling or through a reference
specification. Ferret uses an accredited workflow specification to determine baseline behavior. An audit is an independent review of
records and activities to assess the adequacy of system controls, to ensure compliance with established policies and procedures.

Ferret has attempted to address three key security problems in complex secure systems. First, Ferret has placed a single audit event
into the larger workflow context in which it occurs, and has tracked the progress of the workflow to completion. Second, Ferret has
provided a mid-level security policy language that fills some of the gap between high level, human language oriented and low-level
computer oriented policies. Lastly, Ferret has attempted to mitigate the insider threat, that is, activity from authonzed users who have
abused their legitimate authority, through the corroboration of audit events.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Computer Network Security, Insider Threat 21

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OR REPORT ON THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev.2-89)

.) Prescribed by ANSI
Std. 239-18 298-102

Ferret
Workflow Anomaly Detection System

Final Report
February 28, 2005

Issued by ARDA under:
Contract Number NBCHC-030082

Prime contractor: MCNC-RDI

Subcontractor: MCNC
CAGE Code: 3BFW5
DUNS/CEC Number 11-872-8505
TIN Number: 01-0702442
Technical Contact : Administrative Contact:
T. J. Smith Alicia Brown
MCNC-RDI MCNC-RDI
P.O. Box 12889 P.O. Box 12889

RTP,NC 27709-2889 RTP, NC 27709-2889
Phone: (919) 248-1852 Phone: (919) 248-9217
Fax: (919) 248-1455 Fax: (919) 248-1455
tjsmith@mecnc.org durham@mcnc.org

20050315 306

MCNC-RDI

CONTENTS CONTENTS
Contents

1 Executive Summary 1

2 Introduction 1

2.1 INSIder TRICAL . .+ o o v o e e e e v e 1

22 Ferret SOIUtON .« o o v e 2

2.2.1 NovelandRelated ASPects v« o v v it it e 2

222 WOrklOWS COMEXt » « « v v v v e e e e e e s e et e s et e e e 2

223 Security POliCY . « « v v v v i e e e 2

3 Underlying Technologies 4

3.1 JavaTechnolOZiEs . . . o v v v v v vt e e e e e 4

3.2 Extensible Markup Language (XML) ottt i it e 4

B3 CASIOT &+ o o o v e 4

3.4 Extensible Access Control Markup Language (XACML) 4

4 Ferret Implementation 5

4.1 Backgroundo i e e e e e e e 5

42 Ferret ATCRItECIUIE . & o v v v v e e e e e e et e it e e e e e e e e e e 5

4.3 Perret Audit Description Language« . o ot e e 6

4.4 EventProCessiNg . . . « v o v v ot v i it e e e e e e e e e e e 6

441 State CheckiNZ . . v v o v vt e it e e 8

442 Policy Checking v v v v vttt 8

443 ConditionChecking . .« o« o o v it e et e e e e e 8

4.5 Ferret VIsualization v v v vt vt e e e e e e e e e e e . .9

5 Case Studies and Testing 11

5.1 Ferret ApplicationDomain oL 11

5.2 Electronic Mail Transmission Validation o v i it ot i e 11

5.2.1 Phishing SCENETO . . . v v v v v it e e 11

522 Testing EnvirONMeNt . . . v v v v v v v v vttt 11

523 RESUMS . v v v v e it e 12

5.3 Web Server Login Authentication e 13

5.3.1 Validation of authentication information from several sources e e e 13

6 Related Work 14

6.1 Insider Threat Detection Techniques o v v i vt v i ottt ittt s e e 14

6.2 Workflow and Description Languages v« v v v v vt i i 14

6.3 Process Workflows as Finite State Machine i i 14

References 16

MCNC-RDI i

LIST OF FIGURES . LIST OF FIGURES

List of Figures
1 Ferret ArChiteCture . . v v v v v v o e e v e e e e e et e et et e e et e e e e 5
2 Normalized Audit Event Processing o o o i i i it i e e e 7
3 FerretConditionClass Hierarchy« i i it i e ettt i it e e s e 9
4 Workflow detail information i it e e e e e e e e e 10
5 Simplified Enterprise ComputerDomain e 11

MCNC-RDI ii

1 EXECUTIVE SUMMARY

1 Executive Summary

The Ferret workflow anomaly detection system project [2003-2004] has provided validation and anomaly detection in ac-
credited workflows in secure knowledge management systems through the use of continuous, automated audits. A workflow,
process, or procedure, is the set of steps that need to be completed to accomplish a goal. Anomaly detection is the deter-
mination that a condition departs from the expected. The baseline behavior from which the anomaly is measured is usually
derived via statistical sampling or through a reference specification. Ferret uses an accredited workflow specification to
determine baseline behavior. An audit is an independent review of records and activities to assess the adequacy of system
controls, to ensure compliance with established policies and procedures.

Ferret has attempted to address three key security problems in complex secure systems. First, Ferret has placed a single
audit event into the larger workflow context in which it occurs, and has tracked the progress of the workflow to completion.
Second, Ferret has provided a mid-level security policy language that fills some of the gap between high level, human
language oriented and low-level computer oriented policies. Lastly, Ferret has attempted to mitigate the insider threat, that
is, activity from authorized users who have abused their legitimate authority, through the corroboration of audit events.

Understanding and characterizing authorized users who abuse their legitimate authority has been a key problem with in-
sider threat. One major threat from insider attack has stemmed from the current state of practice that has employed overbroad
access permission methods for most situations and has had isolated points of policy enforcement. In sensitive environments,
the current security practice of granting access to information has been based on satisfying three key conditions: need to
know, is the person authorized and need to have the information to complete tasks; least privilege, is the information within
the person’s minimum sphere of access rights to enable task completion; and separation of duty, is the person’s responsi-
bilities scoped to preclude unmonitored activities. These three security properties will limit an organization’s exposure to
inside attack.

The Ferret system has offered a rich set of features incorporating various technologies that allow users to identify and
track anomalies in authorized distributed workflows within a secure environment. The main tasks of Ferret have been:
event, workflow, and anomaly representation and visualization; event collection, ordering, and correlation; and workflow
analysis for anomaly detection. The system will be dynamic, allowing changes in workflow and usage policy in near real
time, enabling the system to adapt to current conditions. Since the Ferret system is passive, only taking the audit output of
systems, it can be easily adapted to existing systems.

MCNC-RDI : 1

2 INTRODUCTION

2 Introduction

The Ferret workflow anomaly detection system project [2003-2004] has provided validation and anomaly detection in ac-
credited workflows in secure knowledge management systems through the use of continuous, automated audits. A workflow
[13), process, or procedure, is the set of steps that need to be completed to accomplish a goal. Anomaly detection is the
determination that a condition departs from the expected. The baseline behavior from which the anomaly is measured is
usually derived via statistical sampling or through a reference specification. Ferret uses an accredited workflow specification
to determine baseline behavior. An audit is an independent review of records and activities to assess the adequacy of system
controls, to ensure compliance with established policies and procedures.

Ferret has attempted to address three key security problems in complex secure systems. First, Ferret has placed a single
audit event into the larger workflow context in which it occurs, and has tracked the progress of the workflow to completion.
Second, Ferret has provided a mid-level security policy language that fills some of the gap between high level, human
language oriented and low-level computer oriented policies. Lastly, Ferret has attempted to mitigate the insider threat, that
is, activity from authorized users who have abused their legitimate authority, through the corroboration of audit events.

The Ferret system has offered a rich set of features incorporating various technologies that allow users to identify and
track anomalies in authorized distributed workflows within a secure environment. The main tasks of Ferret have been:
event, workflow, and anomaly representation and visualization; event collection, ordering, and correlation; and workflow
analysis for anomaly detection. The system will be dynamic, allowing changes in workflow and usage policy in near real
time, enabling the system to adapt to current conditions. Since the Ferret system is passive, only taking the audit output of
systems, it can be easily adapted to existing systems. '

2.1 Insider Threat

Understanding and characterizing authorized users who abuse their legitimate authority has been a key problem with insider
threat. One major threat from insider attack has stemmed from the current state of practice that has employed overbroad
access permission methods for most situations and has had isolated points of policy enforcement. In sensitive environments,
the current security practice of granting access to information has been based on satisfying three key conditions: need to
know, is the person authorized and need to have the information to complete tasks; least privilege, is the information
within the person’s minimum sphere of access rights to enable task completion; and separation of duty, is the person’s
responsibilities scoped to preclude unmonitored activities. These three security properties will limit an organization’s
exposure to inside attack.

Users have been given overbroad access permissions, usually to accommodate exceptional situations, without regard
to context, far greater than they really need to perform their typical job functions. This has undermined the least privilege
security attribute. In addition, the host systems have had isolated enforcement points, which have not knowledge of a global
security plans. The policy enforcement points may have contained security policies that are not strongly enforced because
of their scope of knowledge. This lack of systemic policy enforcement has undermined the separation of duty security
attribute. Insiders have exploited these holes in security by accessing information from various unrelated sources and have
used that information in unintended ways that are outside of the scope of their current job responsibilities.

Effective security systems have balanced the need of people to get their jobs done with the mitigation of risk. One way
has been to create security policies that encourage transparency for higher risk activities. Transparency has been achieved
through the creation of audit trails for all high-risk activity. Risk has been mitigated with policies that have checks and
balances. For example, separation of duty and oversight properties have been provided by involving at least two people in
high-risk processes.

MCNC-RDI 1

2 INTRODUCTION 2.2 Ferret Solution

2.2 Ferret Solution
2.2.1 Novel and Related Aspects

Automated mining of audit logs for security purposes has been proposed by James Anderson’s work in 1980 on automated
batch analysis of host audit records to look for intrusions [1]. Ferret has recast audit analysis and correlation from a detective
role into preventative, deterrent, compensative roles with active monitoring.

In the intrusion detection field, a general theory was developed [6], and two schools of thought have emerged: signature-
based [18] and statistical-based [11]. Intrusion and anomaly detection systems have been categorized events into three
buckets: normal, anomalous, and uncharacterized. Most work in the field has focused on strongly characterizing anomalous
events from outsiders to produce security alerts.

In contrast, Ferret has focused on the insider attack threat, estimated to be the largest and hardest attack set to deter,
since the attackers are authorized users of the system and frequently performing authorized functions. Ferret has focused
on strongly characterizing normal events from insiders into workflows, providing a richer context for a single event in order
to identify misuse.

Ferret has had a different temporal perspective, focusing on longer-term event correlation, on the order of days, weeks,
or months. Ferret has had a higher level perspective semantically, having been able to attach a higher-level meaning to event
sets through correlation to workflows.

Ferret has been oriented towards generic application level monitoring, and has been able to describe complex, arbitrary
systems with the twenty patterns in an extremely expressive workflow model. The generic framework has been targeted
towards a specific area such as packet, network flows, or firewalls through modular extensions.

Ferret has been able to address the gap between high level security policy and lower-level implementations through
the use of flexible workflow audit language as mechanism to describe middle level procedures to implement higher-level
security policy. This direct linkage between policy, procedures, and implementation has allowed for evaluation of policy
coverage and effectiveness. ‘

The second generation Ferret has been able to refine context access control model for just in time and in context capa-
bility enablement and disablement. The Ferret approach, a refinement of Clark-Wilson [5] integrity model, has stated: You
can only access or modify information through applications within a certain workflow context, with separation of duty, and

auditing.

2.2.2° Workflows Context

Determining the context of a process has been very difficult in multi-process and multiuser systems, such as knowledge
management systems. Ferret has established workflow context and policy compliance of workflows through audit checklists
of workflow artifacts [21] and corroboration of evidence from multiple sources. The checklists, known as workflow audit
models (WAM), has been flexible specifications of the workflow artifacts and process policy. The audit models has been
expressed as finite state machines (FSM) in the software. The finite state machines have tracked the collection of the audit
artifacts, which mirror the progress of the workflow to completion.

Workflows has cover a wide variety of tasks and situations, so that no one single ontology has been able to express them
all. A particular workflow language has been able to effectively express a process within a certain domain. Likewise, the
Ferret workflow audit model has been a general-purpose language, designed to be able to express general concepts, such as
control flows and workflow patterns. The Ferret project has designed its WAM schema in XML, allowing for extensions to
the WAM at deployment time to provide necessary granularity for specific domains.

2.2.3 Security Policy

Effective security policy has been challenging to create; you must balance the sometimes conflicting security and oper-
ational goals of the organization. Policies that are rigid, or interfere with productivity, have been frequently subverted
or eliminated. Administrative and supervisory positions frequently have had the ability to override security controls for
exceptional situations. The ability to circumvent security controls has been abused. To counterbalance potential abuses,

MCNC-RDI

2 INTRODUCTION 2.2 Ferret Solution

audits of actions have been conduced to ensure prudent use of authority. Security policy has been typically distributed to-
administrative, physical, and technical domains for efficiency and robustness of administration and enforcement.

Ferret has provided a means for auditing interaction between systems for compliance with security policies. Using a
flexible business process description language, we have been able to capture and encapsulate authorized workflows. During
workflows, certain auditable milestones have been checked for compliance with authorized policy. Auditing has given
security policy implementation a much greater flexibility.

Ferret has had the ability to combine multiple behavior models for the analysis. Security model, business process,
organizational structures, and audit artifacts have been combined for assessment. Combinations of different information
sources have provided the means for corroboration of information in distributed systems.

Auditing has worked in concert with context-based access control systems. For example in a context-based access
control system, a party could have claimed a certain context; how would the access control system, or other parties verify
that claim? That claim of trust in a context has sometimes been predicated on the trust of the host operating system. The
host operating system is vulnerable to authorized users, especially in the insider threat scenario.

MCNC-RDI 3

3 UNDERLYING TECHNOLOGIES

3 Underlying Technologies

3.1 Java Technologies

The Java programming language, platform, and its accompanying technologies [14] are the main implementation mech-
anisms for the Ferret prototype system. The Ferret prototype is implemented in the Java programming language taking
advantage of its platform independent capabilities. The visualization portion of the Ferret project was implemented using
a combination of Java objects and Java server pages (JSP) to generate dynamic web page content to enable viewing Ferret
analysis results from any where on the encompassing network using existing browser technologies.

3.2 Extensible Markup Language (XML)

Extensible Markup Language (XML) is a general purpose markup language that may used to express the structure and
contents of information in a self-identifying format. It is compatible with SGML, yet simpler to use and provides more
expressive power that the fixed schema of HTML. XML is expressed in text format that is processed by a suitable XML
parser that adheres to the established XML document processing standards. The XML file, like the HTML, expresses data
in a tree format of arbitrary length and depth [10] consisting of element tags enclosed in angled brackets with required and
optional tag attributes. XML validating processors typically strictly enforce the requirement that XML documents contain
well-formed syntax. For example, each start tag should have a matching end tag or be an empty tag.

XML technologies encompass a set of complementary technologies that together provide the ability design and express
and process the structure of information in flexible manner. The Ferret project uses of two XML technologies - the XML
schema and the XML document. XML schema is an XML document that describes all allowable elements and their ordering
of an implementing XML file. The XML file is an implementation of the XML schema that adheres to the constraints of
the encompassing schema.

Ferret workflow audit language is an XML schema that describes the scope and elements expected in an workflow audit
model. Each workflow audit model is an XML document that adheres to the workflow audit language. The model describes
a specialized workflow process by expressing differing flow relationships between the allowed state elements along their
expected audit information artifact(s), as well as different conditions and references to organization security policies.

3.3 Castor

The Castor project [4] provides facilities for translations between XML entities and Java classes. The application uses
Java reflection capabilities to dynamically create Java objects based on the parsed XML information in any workflow audit
model text file. The Ferret project uses this technologies to translate the Workflow Audit Model representations in XML
into Java objects during analysis phase and translating Java objects into the proper information to be stored in the repository

databases at the conclusion of processing.

3.4 Extensible Access Control Markup Language (XACML)

Extensible Access Control Markup Language (XACML) is an OASIS standard that defines a XML schema for expressing
authorization policies in XML. “XACML enables the use of arbitrary attributes in policies, role-based access control,
security labels, time/date-based policies, indexable policies, 'deny’ policies, and dynamic policies” [16]. Ferret uses the
XACML schema to express dynamic security policies. The Sun reference implementation of the XACML evaluation engine
is used to process dynamic access policies to ensure that audit information attributes are policy compliant when the audit

event occurred.

MCNC-RDI

4 FERRET IMPLEMENTATION

4 Ferret Implementation

4.1 Background

The Ferret system allows users to perform authorized work processes while mitigating the insider threat problem. It analyzes
the audit artifacts generated by the workflow process detecting any diversions from expected artifacts and generates report
information of possible intrusion or abuse. The system uses a multilayer approach to identify probable insider attack. The
system relies on a set of existing organization approved applications, which are adequately annotated to provide useful audit
data artifacts for analysis, and executing with in the organizations private network.

This section describes the implementation of the Ferret System prototype. It describes the general architecture, the
Workflow Audit Description Language developed as part of Ferret and the Event mechanism that examines and reasons
over the audit artifacts.

4.2 Ferret Architecture

Wo rldflow
Analytical
Engine

Netwo rk Audit
Info rmation

Mgmt Interface

Synthetic
Gueries events

Event
MNormalizer

Host Audit
irfo rmation

Result
Re pository

Information
Repository §

g

Applicatio n Audit
Info rmation

Figure 1: Ferret Architecture

The Ferret design (Figure 1) is typical enterprise anomaly detection system architecture. The Ferret prototype system is
implemented as a Java-based framework. Ferret accomplishes its anomaly detection through the use of several distributed
modules, which are decoupled by a relational database. The distributed architecture with flexible input formats, pattern
matching, and output formats is suitable for generalized procedural monitoring system. The event normalization system
transforms events from their native format into a structured XML format that Ferret can process. The normalizer temporally
orders incoming event from multiple sources. The normalizer isolates and decouples the remainder of Ferret from monitored
systems.

The Gumshoe system provides event analysis, corroboration, and production of inferred synthetic events. In order to
handle hosts and applications compromised or misused by insiders, Gumshoe will corroborate events from different hosts

MCNC-RDI 5

4 FERRET IMPLEMENTATION 4.3 Ferret Audit Description Language

and applications to produce synthetic events to increase the confidence of the validity of information collected. Gumshoe
can corroborate information from other collected events or from active interrogation of information sources.

The Ferret workflow analytical engine has three components: a workflow finite state machine (WFSM), a security
policy validator, and an arbitrary condition checking system. The WFSM tracks the progress of the workflow via finite state
machines from beginning to completion. WFSM uses recursive FSMs to handles loops, split, and join patterns. The WFSM
gives Ferret the flexibility to handle twenty workflow patterns. The WFSM are loaded from accredited workflows specified
in the Workflow audit modeling (WAM) language. Ferret checks the workflow events against a XACML security policy to
validate compliance. This verifies that discretionary access control mechanisms in applications or hosts work as expected.
Ferret can be extended for checking that arbitrary conditions are met during the execution of a workflow. This is where
Ferret can be extended for validation of domain specific conditions in workflows.

4.3 Ferret Audit Description Language

Workflows cover a wide variety of tasks and situations, so that no one single ontology is able to express them all. A particular
workflow language is able to effectively express a process within a certain domain. Likewise, the Ferret workflow audit
model is a general-purpose language, designed to be able to express general concepts, such as control flows and workflow
patterns. The Ferret project designed a Workflow Audit Model Language (WAM) schema in XML, allowing for extensions
to the WAM at deployment time to provide necessary granularity for specific domains, such as specification of external
references to information such as organization policies that are expressed using XACML.

WAM is composed of three major categories: data/structure types, flow control elements, and conditions. The work-
flow audit model language (WAM) is derived from the Extensible Markup Language [20] schema (XML-Schema). The
XMLSchema foundation provides extensible, flexible, strongly typed data types and structures. Consequently WAM pro-
vides an extensive set of nineteen primitive data types, such as boolean, string, integer, and float; and arbitrary derived types.
WAM supports polymorphic values with union data types. WAM also provides the notion of an arbitrary aggregation or
collection data types. v

Workflows can be decomposed into twenty generic activity patterns, categorized as: sequence, loop, branch, merge,
synchronization, and cancellation. WAM flow control elements are derived from the Business Process Execution Language
for Web Services (BPEL4WS)[3], which providing a rich control set and familiar naming to enterprise workflow analyst.

Ferret provides a schema compiler for the WAM language and derivatives, and a code generator for the java classes
necessary to incorporate extensions. Ferret provides an extensible run-time validating parser for transforming the workflow
audit model instances into runtime finite state machines instances. Many anomaly detection systems have the procedure or
protocol logic embedded into specialized software or firmware logic, typically increasing processing speed at the expense
of flexibility. Ferret uses a general-purpose engine to analyze the process specifications encoded in WAM. WAM schema
enables the encoding of very complex patterns, using all twenty of the common workflow patterns. This flexibility provides
one of the key differentiators of Ferret to many other detection systems, the ability to handle events from OSI physical layer
(1) through the stack to applications layer (seven). It also enables Ferret to be adapted to the policies and procedures of your
organization at this time and in the future. One of the drawbacks for specification-based anomaly detectors is the expertise

needed to encode and debug the specification.

4.4 Event Processing

Following Event Normalization, event processing applies the normalized audit events to finite state machines, constructed
from workflow audit model descriptions. The audit events are applied to the finite state machine in time order. If the
application of the audit events cause the FSM to reach its end state, then the audit events represents a successfully matched
and completed workflow. Failure to move the FSM to an end state may indicate that all of the audit events for the workflow
are not present in the database yet or may indicate some attempts to circumvent the workflow. In any cases were workflow
ESM:s fail to reach end state, more cycles of event processing may be needed and/or further investigation by an operated
may be required. Figure 2 shows the Ferret event processing strategy.

MCNC-RDI 6

4 FERRET IMPLEMENTATION

4.4 Event Processing

Interface
Observable Observer I
Event 3:Push, | Event | 4: GetFSM Process
Coordinator |EventSets| Queue | Events | Coordinator
2: Pull 5: Push FSM
Event Set Events
L 4 y
DBReaderTask FiniteState
(TimerTask) 7: Get FSM MachineManager
1: Get New Instanc
Events
6: FSM
FiniteState Exists?
- ommit | MachineFactory
Normalized [pata BN 9: Push Events
vent DB - ew
; Instance
b 0: Push y
FiniteState
AuditEvent Machine
Normalizer 10: Process
Events
State Policy Condition
Checker Checker Checker

Figure 2: Normalized Audit Event Processing

Event processing begins any time after normalized audit events are committed to the Normalized Event Database. The
EventCoordinator retrieves the normalized audit events from the database using the DBReaderTask, which connects to the
database and performs the actual data retrieval. Events retrieved from the database are stored in the EventQueue, which
sorts the events according to workflow name and ID fields. The EventQueue extends the Observable class so that registered
Observer objects can be notified when the internal state of the EventQueue changes, such as when new events are added to
the queue.

The ProcessCoordinator coordinates the transfer of audit events from the EventQueue to the various executing FSMs.
This coordinator is a registered Observer of the Event Queue and is notified by EventQueue when new audit events are
available. Once notified by the EventQueue, the ProcessCoordinator retrieves the set of audit events associated with each
workflow name and id pair.

The ProcessCoordinator passes each event set to the FiniteStateMachineManager, which manages all executing FSM
instances. The manager determines whether a FSM instance exists for the workflow name and id pair associated with
the event set. If a FSM does not exists, the FiniteStateMachineManager directs the FiniteStateMachineFactory to create a
FiniteStateMachine based on the workflow name, which is mapped to a Workflow Audit Model Description file, and set its
id. Then the FiniteStateMachineManager passes the event set to the appropriate FSM instance for processing.

Beginning at its start state, the FSM applies the each member of the time-ordered normalized event set to it current state
and attempts to transition to its next state. Transitioning to the next state occurs if the information contained in the audit
event when applied to the FSM state context passes all the applicable checking testing. Audit events are processing this
manner until state transition fails, due to checking failure, or the FSM reaches its end state. If the FSM can not transition

MCNC-RDI ' 7

4 FERRET IMPLEMENTATION 4.4 Event Processing

to its next state, then it waits for a new set of audit events. When the FSM reaches its end state, it writes the updated
audit events, containing the match results, back to the Normalized Event Database or another database repository for report
generation and analyst viewing and investigation.

During event processing, the Ferret implementation allows for the specification of three types of checking for normalized
audit event information. The existing types of checking are state checking, policy checking, and condition checking. The
actual checking that occurs depends on the information present in workflow audit model description for the state. Discussion '

of each type of checking follows.

4.4.1 State Checking

State checking compares the values of the normalized audit event attributes to the expected attributes, excluding the checking
results field, and values in the workflow audit model description. The attributes are arbitrary strings and values based on
the workflow audit description. Ferret uses the reflection capabilities of the Java programming language to extract each
attribute and value pair so that it can be compared with same attribute and value pair from the normalized audit record.

The result field is excluded from comparison because it always specified as an empty string in the workflow audit model.
The field is populated during the checking. So the value will not match what is specified in the audit model which is a blank
string.

Failure to successfully pass state checking directly prevents the FSM from moving to the next FSM state.

4.4.2 Policy Checking

Policy Checking allows an organization’s policies to be referenced in a workflow audit description. Policy Checking infor-
mation is expressed and evaluated in the same manner as other conditions, see below. However, its implementation includes
the instantiation of a XACML policy decision mechanism which accesses the policy and compares the appropriate state or
event attributes and values to the policy’s specified properties and values. The resulting decision is translated to a boolean
value, true or false, and that result is returned as the result of the policy checking.

4.4.3 Condition Checking

The third aspect of checking consists of checking conditions associated with entire workflow descriptions or individual ex-
pected audit events. The conditions are expressed according to the Composite design pattern[8], which allows all conditions
to be expressed and evaluated in a generic manner. In addition, complex conditions can be expressed in tree hierarchy of
arbitrary levels and evaluated to one result. Condition evaluation returns a boolean value indicating whether the expressed
condition evaluated to true or false. The result of the condition evaluation is saved as part of the state evaluation and is

included in the information report for the state.

MCNC-RDI

4 FERRET IMPLEMENTATION 4.5 Ferret Visualization

«interface» L.*
Condition
execute()
S
SimpleCondition CompoundCondition
execute() execute()

add() >
remove(} 1

LessThan GreaterThan | 1981Ch1d0
data data
execute() execute()

Figure 3: Ferret Condition Class Hierarchy

Figure 3 shows the class hierarchy implementation for Ferret conditions. All conditions inherit from and abstract “Con-
dition” interface that contains the execute() method, whose implementation is defined in a derived class. The “Compound-
Condition” class represents a set of conditions that are to be treated as a single grouping. This allows multipart conditions
to be evaluated and return a single result. The “SimpleCondition” is a single condition, which contains the information
to be used to evaluate the condition as well as the implementation specific directives to perform the condition evaluation.
Ferret contains two derived “SimpleCondition” derived classes - LessThan and GreaterThan. In this implementation, these
derived classes can be used individually or together in order to express a range condition. For example, a time value can be
expressed as a range condition containing a lower bound value and an upper bound value.

4.5 Ferret Visualization

The Ferret allows users to view the results of the workflow analysis in a Web browser. The visualization application is a
Java web application that consists of a set of Java server pages and Java language classes that dynamically generate HTML
pages to display workflow and analysis information. The application examines the information collected during the analysis
and corroboration phases, displaying the information in the form of hyperlink text and graphical depictions of workflows.
Figure 4 shows an sample of the display information.

The hyperlinked text display represents the states of a workflow audit model, including the conditions associated with
each state. Selecting any hypertext link, representing a summary of the state information, displays the detailed state in-
formation. Selecting the “hide” hyperlink displays the state summary information without the detailed state information.
Selecting any “Merged flow” state displays hyperlinks to its child(ren) workflow(s). Selecting a child workflow link dis-
plays the states contained in that child workflow; the child state hyperlinks work the same the hyperlinks for the parent
FSM states as described above. The hypertext workflow display is capable of display information for workflow of arbitrary
length and depth, enabling the display of simple as well as complex workflows.

MCNC-RDI 9

4 FERRET IMPLEMENTATION . 4.5 Ferret Visualization

T File “Edit ‘view ‘Go 'Bookmarks Tools ~ Window ~Help .

‘Reload ".:5

& htfgp:[/miﬁk.anr. menc. orgfferretviewwtworkflow-0x10c08800. html

H Back '_- i

EE;!!&Hon_i:ef w$ Bookmarks -

Ferret Workflow Report

|Workfiow 0x10c08800

Ta!

20050210
22:15:31

Ferret v0.9 Workflow 0x10c08800 Generated 0.78 seconds at 22:27:08

¥ ED & €9 | Done

Figure 4: Workflow detail information

MCNC-RDI 10

5 CASE STUDIES AND TESTING

Class HostProperties — L
Tidentity: Identity L. ” Class Service =~ [r————<> Class Application
0 *
+users: Collection) o L. +applications: Collection +user: User
+services: Collection +identity: Identity +eventLibrary: EventLibrary
<<Object>> ..+ <<Object>> 1 Class Person
Class Identity < Class User < P -
1 1.4 +identity: Identity
+uuid: UUID +identity: Identity <> —1 +users: Collection
+hame: String
+location: Location s L. . * 1
Class Building <> Class Room
+rooms: Collection +identity: Identity
+identity: Identity +boundry: Perimeter

Figure 5: Simplified Enterprise Computer Domain

5 Case Studies and Testing

The cases presented were chosen to illustrate the effectiveness of specification-based anomaly detection of malicous insider
using the Ferret framework on existing computer systems and procedures. Alternative solutions do or could exist, however
they are typically intrusive to users or envasive to the procedure or system. Ferret is presented as a simple means of acheiving
our goal. Human interaction with the test systems was simulated because of the cost and complexity of compliance with
human subject testing and privacy laws and regulations.

5.1 Ferret Application Domain

Ferret is a general framework for the tracking and validation of workflows. To apply ferret to a specific domain a knowledge
base must be constructed. The actors, actions, objects and relationships of the domain must be identified and characterized

as in Figure 5.

5.2 Electronic Mail Transmission Validation
5.2.1 Phishing Scenerio

One of the critical elements of enterprise processes is electronic mail. Ensuring that email sending and delivery integrity
by validation of established procedures is vital to enterprise security. “Phishing”, that is the sending of authentic appearing
email to users to solicit sensitive information, is one of the most successful and widespread social engineering techniques
yet developed to date. The phishing technique can be even more effective when used by a trusted insider, because of access
to resources and their intimate knowledge of specific people and processes.

5.2.2 Testing Environment

The testing environment utilizes a cluster of five machines: mustela, mink, ermine, stoat, and weasel to simulate three large
domains: alpha.dom, beta.dom, and delta.dom. Each domain has one thousand simulated users, sending and receiving
electronic mail messages. The users are simulated via unix shell scripts. The postfix server was used for the sending and
delivery of the SMTP messages. There are three scenarios with different infrastructure configurations ranging from easy to
difficult to spoof phishing messages to illustrate how ferret could contribute to the security of system and detect malicious
insider activity. ’

MCNC-RDI 11

5 CASE STUDIES AND TESTING 5.2 Electronic Mail Transmission Validation

The first scenario involves the default or typical configuration, postfix servers configured to send SMTP messages in the
clear between domains. The servers are configured to reject SMTP relay requests, so that only email originating from the
SMTP server of that domain, as configuted by DNS, will be received.

The first scenario has several attacks. The first attack is the easiest, a valid domain user (user! @alpha.dom) composes,
and sends email proportedly from another user in the same domain (user2@alpha.dom) to a third user in the same domain

(user3@alpha.dom).

[userl@weasel)$ cat fake.txt

From: User Two <user2>

To: User Three <user3>

Subject: Faked Mail testing

This is the body of the email message.

[userl@weasel)$ cat fake.txt | /usr/lib/sendmail -t

The phishing attack can even be effective in situations where strong cryptographic techiniques are used for document
integrity and authentication. For example, the Secure / Multipurpose Internet Mail Extension (S/MIME) is a security
enhancement to the MIME e-mail format standard. S/MIME only protects certain portions of the body of the message and
not the header, which contains the To, From and Subject fields of the RFC-822 SMTP message. A variation of the first attack
can be used, where false From field information can be used in the header. The attacker can than attach multiple signed
sections to an email. The first signed section being from the supposed sender of the email. The remaining sections will
also be validly signed by scapegoated users and contain the phishing information. Mail user agents evaluate all the signed
sections of the email and possibly display the identity of the signer, typically from the first section.

One scenario is the attacker assumes the victims identity and appends spoofed email messages directly to the victims
email store. The emails could have completly authentic header information from the supposed sender. There would be no
SMTP log trail of sending or receiving to review for irregularities.

5.2.3 Results

A set of direct results and collateral information was gained during the experiment. Ferret tracked the sending and delivery
of SMTP messages from the postfix server logs from the Unix syslog facility. Two workflows were established, one from
local delivery of email, and the second for delivery of email to another SMTP host.

1.1 Feb 17 13:39:44 mink postfix/pickup([28550]:
38D4E60864: uid=501 from=<userl>

1.2 Feb 17 13:39:44 mink postfix/cleanup(28661}:
38D4E60864: message-id=<20050217183944.38D4E60864@mink. anr.menc.org>
1.3 Feb 17 13:39:44 mink postfix/qmgr(3182]:
38D4E60864: from=<userl@mink.anr.menc.org>,
size=319, nrcpt=1 (queue active)

1.4 Feb 17 13:39:44 mink postfix/smtp(28663]:
38D4E60864: to=<user3@weasel.anr.mcnc.org>,
relay=weasel.anr.mcnc.org(152.45.4.48],

delay=0, status=sent {250 Ok: queued as B350F1447B)
1.5 Feb 17 13:39:44 mink postfix/qmgr(3182]:
38D4E60864: removed

The listing (1) above shows the Unix system log from mink.anr.menc.org for the remote delivery of email from user] @mink.anrmcnc.org
to user3@weasel.anr.mcnc.org. Ferret normalizes the system logs from both hosts, and corroborates a number of pieces
of information. Element 1.1 from the postfix/pickup command informs the system that a new email workflow numbered
38D4B60864 has begun from userl on host mink. The user] label and uid 501 association is confirmed. Element 1.2 contains
the email message id, and is linked to the workflow via the 38D4E60864 identifier. Element 1.3 enqueues the message for
delivery and contains the full from email address, and is linked to the workflow via the 38D4E60864 identifier. Element 1.4
records the delivery of the SMTP to weasel.anr.menc.org and contains the full receiptiants email address, and is linked to the
workflow via the 38D4EG0864 identifier and gives the weasel workflow identifier B3sor14478. Element 1.5 completes workflow

38D4E60864.

12

MCNC-RDI

-~

5 CASE STUDIES AND TESTING 5.3 Web Server Login Authentication

2.1 Feb 17 13:39:44 weasel postfix/smtpd[22975):
connect from mink.anr.menc.org{152.45.4.100]

2.2 Feb 17 13:39:44 weasel postfix/smtpd[22975]:
B350F14478: client=mink.anr.menc.org(152.45.4.100]

2.3 Feb 17 13:39:44 weasel postfix/cleanup{22978]:
B350F1447B: message-id=<20050217183944.38D4E60864€mink.anr.mcnc.org>
2.4 Feb 17 13:39:44 weasel postfix/smtpd(22975]:
disconnect from mink.anr.mcnc.org[152.45.4.100}

2.5 Feb 17 13:39:44 weasel postfix/local[22979]:
B350F1447B: to=<user3@weasel.anr.mcnc.org>, relay=local,
delay=0, status=sent (delivered to mailbox)

The listing (2) below shows the Unix system log from weasel.anr.mcnc.org for the same transaction and contains two work-
flows. The first workflow, elements 2.1 and 2.4 contains the SMTP connection from mink. The second workflow, elements
2.2,2.3,and 2.5, contain the delivery of the email message from user! @mink.anrmcnc.org to user3@weasel.anr.menc.org.

5.3 Web Server Login Authentication
5.3.1 Validation of authentication information from several sources

One goal of strong enterprise security is the use of strong, positive authentication mechanisms for access control to senstive
facilities, systems, and materials. To acheive this goal, Ferret could be utilized to integrate and validate authentication
information from existing commercial and goverment off-the-shelf systems. One simple example of a security policy
workflow is the requirement for a person to badge into a building and secure rooms prior to logging into a secure terminal
in the building. To utilize Ferret a procedure would be established to encode the rules for integration of authentication
information. The procedure would have three major steps: (1) use of Photo ID Smart badge to gain access into the sensitive
facility, (2) use of Photo ID Smart badge to gain access into secure room, and (3) use of Photo ID Smart badge to log into
secure terminal. Each step in the procedure would generate an audit event to be collected by Ferret from that system. These
badge accesses would be recorded on a computer in the building security office. The user would then logon to their secure
terminal with a smart card and PIN; this would be recorded in the hosts access log. The Ferret system would then take
the audit output from the various access/entry control systems, create a flow context, and establish if the user followed the
described security policy workflow. If the user logged into the system with a partial or empty context, an anomaly would be
issued by Ferret. Ferret in this example couples information from unmodified legacy physical and computer access controls
systems for a systemic validation of conformance of the users activities to the security policy. The smart badge itself could
itself be a fourth audit source, if it contained an access log and could be queried. Ferret turns two or three factor into a
composite n-factor authentication method with multiple independent corroboration points. The testing environment utilizes
a cluster of five machines: mustela, mink, ermine, stoat, and weasel to simulate three large domains: alpha.dom, beta.dom,
and delta.dom. Each domain has one thousand simulated users, accessing three web servers. The users are simulated via
unix shell scripts. In each test, Ferret correctly identified the instances in which the login authentication workflow process
was violated.

MCNC-RDI 13

6 RELATED WORK

6 Related Work

6.1 Insider Threat Detection Techniques

Research in the area of insider threat detection has emerged as an important area of examination as the potential damage
from incidents of inside threat continues to escalate. Investigation of insider threat [2] has classified insider threat detection
techniques into a small set of general categories: develop profiling as a technique, detect misuse of applications, provide
traceability for system objects, identifiy critical information automatically, and design systems for detectability. Various
projects exist that have explored these themes in detecting insider threat. Nguyen [15] discover insider threat by examining
the relationships between users and file system access, which are fairly regular. Through the examination of raw data,
they have endeavored to develop generic models that detect large sets of attacks. Snapp [19] have developed “a prototype
Distributed Intrusion Detection System (DIDS) that combines distributed monitoring and data reduction (through individual
host and LAN monitors) with centralized data analysis (through the DIDS director) to monitor a heterogeneous network
of computers”. Marin[12] have developed a hybrid method that initially uses expert rule based system and then clustering
mechanisms to classify system users based in the frequency and types of commands that they employ within a certain period
of time. _

Ferret has a combined approach to detecting insider threat. It has used process workflow models to describe proper
use of a set of system objects. The system objects have reported their use through audit events which are collected from
multiple sources and have been correlated to bolster evidence of correct use. However, deviation from the correct use of
system objects and privileges has also been detected as by product of the examination of system information, which may not
adhere to correct patterns of use. Those incidences of non-compliance use have been reported as indications of unintentional
misuse or potential insider attack.

6.2 Workflow and Description Languages

Workflows have described the ordering of tasks and organizational components in a business process [7]. Process models
have been used to describe routing techniques for the process include decision chain and event flow models. Decision chain
model has used milestone and decision points to describe a business process in detail. The event flow model has described
a business process as a connection of manual and automatic events involved in a business process.

A variety of workflow description languages has existed to express organization workflows. Business Process Execution
Language for Web Services (BPEL4WS), developed jointly by BEA, IBM and Microsoft, is language for formal specifica-
tion of business process and build interaction protocols. Business Process Modeling Language (BPML) has been a language
for specifying the processes of an enterprise. BPML has been developed by BEA, Sun Microsystems, and SAP. XML Pro-
cess Description Language (XPDL) governed by Workflow Management Coalitions (WIMC) facilitates process description
interchange between workflow vendors. Wf-XML, also from WfMC, has defines the runtime interactions between process
automation system to support process enactment across multiple domains. While these are just a few example of workflow
description languages, other research projects, open source and commercial languages have existed. However, BPEL4WS
has emerged as a widely accepted language that is capable of expressing business processes in a variety of domains.

6.3 Process Workflows as Finite State Machine

Process workflows have defined the activities, constraints, and supporting applications required of a business process with-
out regard to its implementation. Event-based process workflows have been implemented as state transition machines, which
map activities to states with associated constraints or conditions and express transitions between the states containing pre-
and post conditions. Several research projects have existed that implement process workflows as state transition machines.
Apache has developed Lenya [9], which is open source content management system with the capability to express work-
flows. Workflows in Lenya have been expressed as state transition machines described in XML text. OSWorkflow, a Open
Symphony project, has been “a flexible workflow engine based on the finite state machine concept” [17]. The workflows

are described in XML.

14

MCNC-RDI

o

-

6 RELATED WORK 6.3 Process Workflows as Finite State Machine

The Ferret prototype has implemented the process workflows as finite state machines derived from the XML represen-
tations of the process workflows defined by an XML schema. Each finite state machine instance has tracked the completion
of each task that comprises the workflow instance by gathering and examining the audit artifacts for that ask. If the artifacts
are as expected for the state, the FSM instance has transitioned to the next state or the end state if all states have been visited.

MCNC-RDI : 15

REFERENCES REFERENCES

References

[1] J. P. Anderson. Computer Security Threat Monitoring and Surveillance. James P. Anderson Co., Fort Washington,
Pennsylvania, April 1980.

[2] Robert H. Anderson. Research and Development Initiatives Focused on Preventing, Detecting, and Responding to
Insider Misuse of Critical Defense Information Systems. Technical Report CF-151-OSD, Rand Corporation, 1999.

[3] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes Klein, Frank Leymann, Kevin Liu,
Dieter Roller, Doug Smith, Satish Thatte, Ivana Trickovic, and Sanjiva Weerawarana. Specification: Business Process
Execution Language for Web Services Version 1.1, May 2003.

[4] The Castor Project. http://castor.codehaus.org/.

[5) D. D. Clark and D. R. Wilson. A comparison of commercial and military computer security policies. In Intrusion
IEEE Symposium on Security and Privacy,, pages 184-194, Oakland, April 1987.

[6] D. Denning. An intrusion detection model. IEEE Transactions on Software Engineering, 13(2):222-232, February
1987.

[7] Ann DiCaterino, Kai Larsen, Mei-Huei Tang, and Wen-Li Wang. An Introduction to Workflow Management Systems,
November 1997.

[8] Mark Grand. Patterns in Java, volume 1. Wiley and Sons, Inc., New York, 1998.
[9] Apache Lenya project. http:/lenya.apache.org, December 2004.

[10] Xiaogang Li and Gagan Agrawal. Supporting high-level abstractions through xml technology. In LCPC, pages 127-
146, 2003.

[11] T. Lunt and R. Jagannathan. A prototype real- time intrusion detection expert system. In Proceedings of the 1987
IEEE Symposium on Security and Privacy., Oakland CA, April 1988.

[12] J. Marin, D. Ragsdale, and J. Surdu. A hybrid approach to the profile creation and intrusion detection, 2001.
[13] Dan Cristian Marinescu. Internet-Based Workflow Management. Wiley, 2002.
[14] Sun Microsystems. Java technologies. http://java.sun.com/.

[15] N. Nguyen, P. Reiher, and G.H. Kuenning. Detecting insider threats by monitoring system call activity. Technical
report, [EEE Information Assurance Workshop, United States Military Academy West Point, New York, June 2003.

[16] OASIS. Extensible Access Control Markup Language (XACML). http://www.oasis-open.org/committees/xacml, Jan-
uary 2005.

[17] OSWorkflow Group. OSWorkflow Project. www.opensymphony.com/osworkflow/.

[18] E. Sebring, E. Shellhouse, M. Hanna, and R. Whitehurst. Expert systems in intrusion detection: A case study. In
Proceedings of the 11th National Computer Security Conference, Washington, DC, October 1988.

[19] Steven R. Snapp, James Brentano, Gihan V. Dias, Terrance L. Goan, L. Todd Heberlein, Che lin Ho, Karl N. Levitt,
Biswanath Mukherjee, Stephen E. Smaha, Tim Grance, Daniel M. Teal, and Doug Mansur. DIDS (distributed intrusion
detection system) - motivation, architecture, and an early prototype. In Proceedings of the 14th National Computer

Security Conference, pages 167-176, Washington, DC, 1991.

MCNC-RDI 16

»

REFERENCES REFERENCES

[20] W3C. Extensible Markup Language (XML) 1.0 (Second Edition) . http://www.w3.0rg/TR/2000/REC-xml-20001006.

[21] Workflow Management Coalition. Workflow Management Coalition Audit Data Specification. Document Number
WEMC-TC-1015, September 1998.

MCNC-RDI _ 17

